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ABSTRACT

The reconstruction of continuous-time signals s(t) from the sign of their

(deliberately) contaminated samples is considered. Sequential, generally non-

linear estimates of s(t) are established and their performance is studied;

error bounds and convergence rates are derived. The signal s(t) need not be

bandlimited. The convergence rates obtained here are faster than those ob-

tained in [4] for nonsequential estimates. The degradation in the reconstruc-

tion of the signal, due to transmission over an arbitrary noisy channel, is

also investigated and bounds on the additional error are obtained.
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I, INTRODUCTION

This paper is concerned with the problem of reconstructing a continuous-

time signal s(t), - < t < -, from its sign (clipped version) sgnfs(t)],

- < t < -. In general the binary signal sgn(s(t)] does not uniquely de-

termine s(t) even when s(t) is an analytic function. For example, when s(t)

is a bandlimited function and thehard-limitersgn x is replaced by a strictly

monotonic transformation *(x), then s(t) can be recovered from the bandlimited

version of O[s(t)] by using a recursive algorithm based on the principle of

contraction mapping; this was accomplished by Landau [1] for conventionally

bandlimited functions and by Masry and Cambanis (2] for bandlimited (in the

sense of Zakai) stochastic signals. No such results, however, are available

when (x) - sgn x whether s(t) is bandlimited or not (see, for example, [3]).

In [4] we proposed a digital scheme, modelled as a transmitter/receiver

as in Figure 1, whereby the signal s(t) - not necessarily bandlimited - is

sampled periodically at a fixed sampling rate W. The samples {s(k/W}k are

deliberately contaminated by additive noise {Xk}k having an appropriate dis-

tribution F(x) (in practical applications, {Xk}k are computer generated random

numbers drawn from the distribution F(x)). The sign of the contaminated samples

{s(k/W) + Xk}k is then obtained, i.e., {ZW,k ' sgn~s(k/W)+Xk]l}k. It was then

shown in [4] that estimates Sw(t) of s(t), based on the ±1 sequence {ZW,k}k,

exist such that sw(t) converges (with probability one) to s(t) as the sampling

rate W tends to infinity. Note that in the absence of {Xk}k, s(t) cannot be

reconstructed from {sgn[s(k/W)]} as W .

This paper continues the investigation begun in [4] and has several objec-

tives: We first note that the estimates considered in [4] were nonsequenttal,

i.e., they reconstruct {s(t), t > 0) from the entire data set {Z k 1,O . Our

first objective is to establish sequential estimates of s(t) and study their



performance. We seek to obtain tight bounds on the moments of the error

sw(t) - (t) for a finite sampling rate W, the establishment of mean and prob-

ability one rates of convergence as W - -, and a central limit theorem for the

error sw(t) - s(t). These results for the sequential estimates are sharper

than those obtained in [4]; for example, the rate of convergence of the mean-

square error is at most W 1/2 for the nonsequentlal estimates of (4] and is

W"2/3 for the sequential estimates considered here. A second objective of this

paper is the investigation of the effect of channel noise when the binary data

(ZWk}k is transmitted over a noisy channel (see Fig. 2). This is considered

in Section III where bounds on the additional error in the estimation of s(t),

due to channel noise, are derived. Distinct results are obtained for the white

and colored channel noise cases.

The approach used in (4] and in this paper, to deliberately contaminate the

signal s(t) before quantization, can be viewed in two ways. One is that of

"dithering" - a concept which has been used in the past for correlation func-

tion estimation [5] [6], digital match filtering [7], and other aspects of

digital signal processing as reviewed in [8] (see also the paper by Root (9]

in the context of communication through unspecified additive noise). Alter-

natively, it can be viewed as random quantization for deterministic continuous-

time signals, The idea of random quantization has recently been advocated by

Papantonl-Kazakos (10] for discrete-time stochastic signals and shown to be

essential for stability under perturbations in the statistical description of

the signals.

The organization of the paper is as follows. In Section II we consider

the noise-free channel case and derive the convergence properties of the

sequential estimate w(t). In Section III we consider the effect of channel

noise on the performance of the estimate iw(t). Both Sections II and III con-

tain a discussion on the choice of the parameters of the transmitter/receiver
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such that the reconstruction of the signal is achieved with an error not ex-

ceeding a prescribed level. Section IV is a collection of remarks on certain

unresolved questions in this area. The Appendix contains certain auxilliary

propositions needed for the derivations in Section II, as well as a supplement

to Section III.

II. THE RECONSTRUCTION OF THE SIGNAL (NOISE-FREE CHANNEL)

A. Preliminaries

We consider the noise-free channel case, as depicted in Figure 1, and

specify admissible distributions F(x) of {Xk}, linear systems L, and memoryless

nonlinearities g(x), such that sw(t) is a sequential estimate of s(t); the con-

vergence properties of sw(t) are then obtained. Throughout this paper it is

assumed that the signal s(t) belongs to the following class of signals.

Assumption A. Let b be a fixed known positive constant and let s(t), t > 0,

be any uniformly continuous function satisfying js(t)I b for all t > 0.

The constant b is simply a peak constraint on the signal s(t), Aside from

the knowledge of b, the receiver structure and the convergence results of this

paper are nonparametric in the signal. Next it is assumed that the contaminating

random numbers {Xk}k=O constitute a sequence of independent identically dis-

tributed random variables with a symnetric distribution F(x). The following

argument provides the rationale for the recovery scheme and determines the class

of admissible distributions F(x). Let X be a random variable with a symmetrlc

distribution function F(x) and define the moment function u(s) by

u(s) = E[sgn(s + X)), <- s <.

Then I
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u(s) - PCX 's] -PCX < -s]

- 1 - 2F(-s-)

- 2F(s) -1, - - < s < -.

Thus u(s) is strictly monotonic on an interval (-c,c) if and only if F(x) is

strictly monotonic on (-cc). Any distribution F(x) which is strictly mono-

tonic on an interval (-c,c) for some c > b is an admissible distribution for

the sequence {Xk} in the transmitter. Now let

m(t) = E[sgn(s(t) + X)J, t > 0 (2)

be the mean function of the hard-limiter output,with input s(t) + X, then it

is seen that

m(t) = Es(t)], t > 0. (3)

By the strict monotonicity of u(-) over (-c,c), for some c > b, we then

have s(t). = il(m(t)). Hence, in principle, an estimate s(t) of s(t) can be

obtained from an estimate A(t) of m(tj via s(t) = -l(;(t)); m(t) can be ob-

tained from the binary data {Zw,kIk in a linear recursive manner, This ex-

plains the structure of the recovery scheme in Fig. 1. Some refinement of

the above argument is needed, however, since ;(t) need not take values in the

interval (p(-b),P(b)J whereas m(t) does. This will become clear below,

Convergence results can be obtained for any admissible distribution F(x)

specified above; however, In order to provide explicit bounds on the mean-square

error of the estimates, we shall concentrate on three typical distributions.

When X Is uniform over t-b,b] we have

(-I1 ,s < -b

Uu(S) s/b, -b <s < b (4)
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When X is normal N(Oa 2) we have

UN(S) - 2t(s/q)-1, < s <()

where (x) is the standard normal distribution function. When X is Laplacian

(f(x) - (c/2)exp(-lxl)) we have

uL(s) - (sgn s) (l-e'"LsI), --<s<-. (6)

We now specify the memoryless nonlinearity g(x) in the receiver by g(x)

= l(x) over an interval containing [E(-b), V(b)], and by g(x) = 0 elsewhere.

For the three chosen distributions F(x) we have VN(s) and uL(s)'are invertible

over the entire real line while uU(s) is invertible over [-b,b], and we define

g(x) as follows.

Assumption B. We say that (B) is satisfied if any one of (81), (82), or

(83) is satisfied.

(81): X is uniform over C-b,b] and

gU(X) bx : xj < 1,gu(X) = , X >x >1.

(62): X is normal N(O,a2) and

gN(X) = , otherwise C, £ > 0.

(83): X is Laplacian and

- sgn x)tn(l -Ixl) IxI < 1-e-x)=, c =bic , € O.

gL(X) 0 , otherwise

We next specify the linear system L in the receiver whose output mw(t) provides

an estimate of the function m(t) given in (3).
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We consider sequential estimates using i sliding window on blocks of a fixed size

N of the data (ZW,kl: First m(t) is estimated at the sampling pointsfk/W}IZ 0 by

N-1

mW)W i.EZW l+k ' k 01.. 7

and then m(t) is estimated either by the step function

A~t ( k mW~) I k+l)(t) (8a)

k 0

or by the pi-ecewise linear function

MW (Wt-k) +l +1-(Wt-k)] 1W( A ) k k+l (t). (8b)

k0W

The estimate Sw(t), t > 0, is then given by

;W(t) - gcnAwmti (9)

where g(x) is specified by Assumption (B) and mw(t) is given by (8a) or (8b).

Thus sw(t) is obtained sequentially with delay not exceeding N/W and (N+I)/W

for (8a) and (8b), respectively. The estimate sw(t) determined by (8b) is con-

tinuous in t whereas the estimate determined by (8a) is a step function in t,

and thus the former may be considered a more suitable estimate for the con-

tinuous signal s(t). Note that when X is uniform over [-b,b], we have
A A

Sw(t) - brow(t), t > 0 (10)

since only the linear portion of gU(x) is used (as by (8a) and (8b), Imw(t) < 1).

In this case, therefore, the estimate Sw(t) is linear in the data {Zw,k)O.

B. Bounds on Mean-Square Error and Discussion

Our first result provides a bound on the mean-square error of the estimate

sw(t). It is stated in terms of the modulus of continuity w(s;6) of s(t), which

is defined for each 6 > 0 by

6
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w(s;6) = sup IS(t) - s(t'.),
{t,t'> 0: ltt'l<8}

and which tends to zero as 6-0 by the uniform continuity of s(t) over [0,&).

Eventhough we state all results for signals defined, and uniformly continuous,

over the entire half line [0,eD), thb same results are of course valid for con-

tinuous signals defined over finite intervals [0,T] with the modulus of contin-

uity over [0,) replaced by that over [0,T].

Theorem 2.1. Under Assumptions (A), (B), the estimate Sw(t) satisfies

2 2N
E[St s(t)2 < K, W(s-; ) + K2

uniformly in t > 0. The constants K1 and K2 are determined by (B) as follows:

For (81): K1 = 4 , K2  
2

For (B2): Kl = --- K2, 1 2 ec 2 /a (+b2/2

I=I=U22c 2 2?2
For (B3): K1 

= 4a2 K2 9 K2 = 2e2ac (l+b2/C 2

Theorem 2.1 shows, in particular, that the estimate iw(t) converges to s(t)

in the mean-square sense as W-, uniformly in t > 0, provided the block size N

is chosen to depend on W, N = NW, such that

NW
NWv and w- -0 as W-. (l1)

Proof. We first note that the function m(t) = u[s(t)] is also uniformly con-

tinuous on [O,,) since u(s), given in (4)-(6), is diffe-entiabla over (-b,b] with

(I/b , under (Bl)

Q max P'(s) = " , under (82) (12)
tsI<b , under (B3),
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i.e.,

W(M;6) <_ Q W(s;8). (13)

Next we obtain a bound on the mean-square error of the estimates mw(t), given in

(8a)-(8b). The corresponding bound for sw(t) follows then from Proposition 1 of

the Appendix.

a) For the estimate (8a) and for each fixed t > 0, we have mw(t) m(k/W)

where k is such that k/W < t <(k+1)/W. Since

k kEfZW,k] ucs(w.)] m(q)

we have by (7)

~N-1

1=0

which is a positive linear operator on the function m(u), u > 0, and by a well-

known result in approximation theory [11, pp. 28-29]

(Bias~mw(t)]( = IE[mw(t)] - m(t)l(< 2 w(m;aW,k(t) )

where

2 -I2  1 N-i1k 2 1-I k 2

1=W ((t) (t- 1k 0k -

-O =N-1 kN-w1

The second term above +s<o for N> 2 since 0 t - k HnN N2

1 -k+ ktN-I N 2
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r2

As the bound on aWk(t) does not depend on k, we have for all t > o

NIBias(mw(t)] < 2w(m; N ). (14a)

Now since {ZwkI are independent with Var[Zwk ]  2 = 1, i.t follows from

(7) that
1 N-1

SVar[Zw,i+k ] <- (Na
Var [mw(t)] N- Z0 1 (15a)

Thus for all t > 0 we have by (14a) and (15a)

E[iw(t ) - m(t)] 2 < 4 wZ~;_N_

and the corresponding bound for Sw(t) follows from (13) and Proposition 1 of the

Appendix.

b) For the estimate (8b) and for each fixed t > 0 with k/W < t <(k+l)/W,

(Sb) can be written in the form

k+N
mw(t) = Z hwk(t,i) ZWi (16)

i=k

where

C El-(Wt-k)] , i =k

h i = k + 1,...,k + N - 1 (17)

(Wt-k) , i =k + N.

Then

k+NE[mw(t)] = hw,k(t"i) m(1W)

i=k

which is a positive linear operator on the function m(u), u > 0 since hwk(tI) > 0
k+N

and li~k hw,k(t'i) = 1. It follows, as in Part (a), that
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IBias[mW(t)]l = IE[mw(t)]-m(t)I < 2 w*(m;ctk(t))

where now

2k+Ni.t)

a M,k(t) t)2k (' t hwk(ti).

After some algebra we obtain

'W,kt + [N2  (2N-l) (Wtk)]

• !j=l NW"

1 N-i

j~l W"

Summing up the first term above and noting that the second term is bounded by its
maximum value 1/4W2 (since 0 < (Wt-k) <1) we have

~W~k~t) N (Wk(±L J + 1)

'6W W 3W

N2

__

Thus for all t > 0
N

IBiasIm(t)] l < 2 +(m; .. NN) (14b)

- - -W

From (16) we also have

W , ,) 6 W W

k+N k+N

Varm(t)] = hw(t,i) Var[Zw 1i  < hwk(t,i) (18)

1=k I =k
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and by (17)

k+N h2122
ik h'k(tNi) = -- {[l-(Wt-k)]2 + (N-i) i (Wt-k)21.

ti~k W m

Putting x = (Wt-k) we have 0 < x <1 for which 1< (l-x) 2 + x2 <

so that

K+N

ithl7I=hkt4i <N" N (19)

It follows that for all t > 0.

Var[mw(t)] < (15b)

so that by (14b) and (15b) we have for all t > 0

ECmw(t) - m(t)] 2 < 4 w 2(m; N ) +l

and the final result for Sw(t) follows as in Part (a).E

We now discuss the implications of Theorem 2.1. The first term in the bound

is due to the bias and the second is due to the variance of the estimates (8).

For a fixed sampling rate W, the block size N must be small to reduce the bias

but large to reduce the variance. This trade-off is standard in other areas as

well (e.g. the window- bandwidth parameter in spectral and probability density

estimation). One should therefore use an optimal block size Nopt which minimizes

the bound on the mean-square error. Indeed, when s(t) is Lip Y, 0 < Y < 1, i.e., when

w(s;6) = Ds6Y, we find that Nopt is given by (the integer part of)

S3
Y K2  1 2

N2 = T7 w T+ (20)Nopt ( 2Y K2Ds

for which the mean-square error becomes

11



E[swMt-s(.tU 2  O + 2Y) ( 2 ) T27 1+27 (21)
3Y (2Y) 2 Y

O(W-2"Y/(l+2Y)),

For the (nonsequential) estimates considered in [4], the mean-square error was

shown to be O(W-min(Yl /2)) and, th6s, the estimates of the present paper have

faster rates of convergence for all 0 < y < 1. For instance, when the signal

s(t) has a bounded derivative Is'(t)l < Ds for all t > 0, then Y=l, the optimal

block size Nopt = 0( 213 ) and the mean-square error of the present estimates is

O(W-2/3) compared to o(W"1/2) for the estimates considered in [4]. It may be

of interest to compare these rates to those of other comparable schemes which

also convert a continuous-time signa.] into a binary sequence by periodic sampling

and a direct 2-level quantization. One such popular scheme is the standard

delta modulation [12] which has been analyzed for stochastic signals only; the

most comprehensive analytical study was carried out bySlepian [12] for station-

ary Guassian input signals with rational spectral densities, but unfortunately

no closed form expressions for the mean-square error and its rate of convergence

as W+- are available. The only case we are aware of, for which such closed form

expressions are available, is that of a Wiener process input [13]. In this case

the rate of convergence of the steady-state mean-square error, when an optimal

step size is used, is W" £13]. For our scheme we have so far improved the

rate from W I/2 to W"2/3. Note that the sample paths of a Wiener process are

almost surely continuous but not differentiable and the comparison to our scheme

with Lip 1 signal s(t) may be somewhat questionable, Still, the rate of con-

vergence W"1 of a standard delta modulator with a Wiener process input pro-

vides a performance measure with respect to which the performance of our scheme

can be compared. It remains an open question at this point to find the ultimate

convergence rate possible for our scheme; we conjecture it to be W-1 (see Section

IV) but, so far, we have not found the recovery scheme (receiver) which achieves

12



this rate.

The actual sampling rate W, needed to obtain a mean -square error smaller

than a given level 62, can be determined from (21). For example, for signals

s(t) having bounded derivates Is'(t)l < D for all t > 0 we obtan from (20)

and (21)

3K2vrT_ D 3K2
W > 2 opt- (22)

26 2

Note that while the required sampling rate W is proportional to the variations

paramenter D of the signal, the block size N to be used in the receiver does

not depend on the variations of the signal.

When the distribution of the {Xk } in the transmitter is Gaussian or Laplacian,

the constants K1 and K2 in Theorem 2.1 depend on the parameters (a 2,) under (82)

and on (e,) under (83). These parameters have so far been left arbitrary pos-

itive constants. The question of their optimal values, which minimize the mean-

square error, is now discussed when the signal s(t) is Lip Y, 0 < Y < 1. From

(21) it is seen that the mean-square error is proportional to Kl K 
2  . Minimizing

2Y12K1 K2 with respect to (a2 0 under (82), and with respect to (c,c) under (B3),

yields

,l+2y 1/2

a (12)1 (l+yo)b , E = Yob; under (B2)T -(23)

-1= l+2YY--) (l+yo)b , 2 Yob; under (83)

where yo is the positive real root of the cubic equation

3 1y = 5(y + Y(2y+l)].

For example, for Lip 1 signals s(t) the optimal choice is

a - 2.8042 b , -= 1.2896 b ; under (B2)

- 4.344 b , a = 1.2896 b ; under (B3)

13
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It is thus seen that under (B2) or B3}, the variance of the {XkJ in the trans-

mitter should be chosen to be proportional to b2, and that the constant e in

the nonlinearity g(x) in the receiver should be proportional to b.

C. Probability One Convergence and a Central Limit Theorem

We first obtain bounds on the higher order moments of the error sw(t) . s(t)

which provide faster rates of convergence.

Theorem 2.2. Let Assumptions (A) and (B) be satisfied and let the signal

s(t) be Lip Y, 0 , Y < 1. If the block size N is of the form N = A WZY
/ l + 2Y)

(cf. 20), then for every integer t > 1, the estimate sw(t) satisfies

2t Kt y(l+O(1))

E[Sw(t) - s(t)] < -,W _ wyt/(+y)

uniformly in t > 0 for some constant Kty•

Proof. The result for Sw(t) - s(t) follows by Proposition I from the result

for ;w(t) - m(t) which we now establish. Writing for brevity m,m for mwW(t), m(t)

we obtain from M^-m = Bias[m] + (m-E[])

2[ti -m . (Bias(MiU) 2t +2t 2t 2-
2m (. )(Bias[m]) E[m . E[mr])j  (24)
j=2

Using the bound on the cumulants of Ri given in Proposition 2 in the Appendix and

the fact that the moments of i can be expressed as finite linear combinations of

the cumulants of mi, we obtain, as in the proof of Theorem 4.2 of [4], that

ECm - m]JI < H 1 + j > 2 (25)-- NJ -Lj/72 J '

uniformly in t > 0 where H. is a constant and [j/2] is the integer part of j/2.

Since s(t) is Lip Y, so is m(t) (cf. (13)) and by (14a) - (14b) we have

IBias[m]I< 2 w(m; N) 2Dm  (26)
- "W \ w4
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Putting N - A W2Y/( 1 + 2Y) in (25) and (26) and substituting in (24) we obtain

Ewy^ - mj L )  + (1 + o(1)) 1 ( ) L  A 1 I=2 J w qj

(27)
where the constants L z 2Dm/3Y /2 , pj = Y(2 - j) - j +[j/2] and

qj = 2YZ + Yy -2Yj/21

2Y- 2Yt+Y
Since = , q n -- 1,2,...,

2t
it follows that the terms in the sum I in (27) with j even are dominant, and

thus by (27) =2

SK [1+o(l)]
E[m - m 2  < w2y/(l+2yF

uniformly in t > 0, where

K' = (LAY )2 + 2t () L2(Z-n)AP2n H
K, = A2n) H2n.nl2

The convergence rate O(W' 2YZ/(l+ 2y))given in Theorem 2.2 is again faster

than the rate O(W -t min(y,1/ 2)) obtained earlier for the nonsequential estimates

considered in (4]. Theorem 2.2 implies the convergence with probability one of the

estimate sw(t) to s(t) as W- (i.e., corresponding to almost every realization of the

sequence [XkXkO in the transmitter). This strong consistency of ^w(t) together

with the rate of convergence is given in the following.

Theorem 2.3. Let Assumptions (A) and (B) be satisfied, let the signal s(t) be

Lip y, 0 < y < 1, and assume the block size N to be of the form N -A W2Y/ ( 1 + 2Y)

Then for each fixed t > 0 we have with probability one

15



, A

(W0 )U sup Isw(t) - s(tI- 0 as WOw w

for every constant 8 satisfying 0 < 8 < •

Proof. We note that for each fixed t > 0, the estimate sw(t), regarded as a

random process with parameter W > 0, is separable. The result then follows from

Theorem 2.2 and Kolmogorov's theorem (Neveu (14, p. 97]) in the manner of the proof

of Theorem 4.3 in [4]. j

For example, when s(t) has a bounded derivative then y = I and with probability

one we have, in particular,

W8 ISw(t) - s(t)1----o as W

for all 0 < 0 < 1/3. for the estimates considered in [4] we obtained 0 < 8 < 1/4

for the same example and, thus, the sequential estimates of the present paper

have a faster rate of almost sure convergence.

We finally derive a central limit theorem for the estimation error £w(t) - s(t)

which is useful in obtaining confidence intervals for this error. Define the

normalized error process

w(t) = Bw(t)[Sw(t) - s(t)], t > 0

where

Bw(t) = u'[s(t)] Var'1 /2[mw(t)). (28)

In the following we shall assume that under (81), X is uniform over [-c,c] withi*

c>b in which case the estimate (10) is replaced by sw(t) = c mw(t).

Theorem 2.4. Let Assumptions (A) and (B) be satisfied and let the signal s(t)

be Lip y, 0 < y < 1. Assume, in addition, that under (81), X is uniform over [-c,c]

with c>b. If the block size N is chosen to be of the form

16



2y

N -WA, 0 < ry

then for each fixed t 10, w(t) is asymptotically standard normal variable as W..

and for distinct t's the values of the process (Iw(t), t > 0) are asymptotically

independent.

The normalizing factor SW(t) is'bounded from above and below, uniformly in

t > 0, as follows:

For (8a): M1 Nl/
2 s. 6W(t) : N2 N

1/2  (29)

For (8b): M1 NI/
2  Bw(t) < M2  N1 2

V I](I/2N)

where

for (81): M1 - I/c ; M2  I ic .b 2

for (82): M1 "J~7exp(-b2/202) ; M2 - (2i0 2 *(b/o) [-¢(b/c)J}"I 2,

for (83): M1 - *texp(-,b) M2 = a exp(ab/2) [2-exp(-ab)] 1 /2.

Proof. We prove the asymptotic normality and independence of the normalized

error process for m(t):
€ mw(t) - m(t)

W(t) - -W) M) , t > o.
Var Ern(t)]

The corresponding results for the signal s(t), as stated in the theorem, will then

follow by using a result of Mann and Wald [15, p.226] in the manner of the proof

of Theorem 3.4 in [4]. Putting

& {g(t) a lWlt ̂ 1 t > 0vat [mw(t)]

17



we have

Biascm(t)]

var 1/ 2 f (t)J

The proof is accomplished by showing that as W- the second term tends to zero and

YOt is asymptotically standard normal variable with asymptotically independent

values for distinct t's.

We have V, < VarCZw, i] < 1 where

V2 - min Var[sgn(s+X)]- 1 - max u2 (s)
Isl<b s <_b

V2 is easily calculated under (82), (B3) and the modified (81) and in all cases

V2 > 0. Thus by (15a) for the estimate (8a) and (18) and (19) for the estimate

(Sb) we have

for (8a): V2 < Var(t ( - (30a)

for (8b): V2  1 1b
- 2g) var(mW(t)] I W . (30b)

Hence by (14a) and the lower bound in (30a) we have for the estimate (8a)

IBias[ ̂ w(t)] )1 0 as W1/-
Var Igm(t)] /

by assumption on N. Similarly for the estimate (8b) (cf. (14b) and (30b)).

We now consider &w(t). Clearly E[&W(t)] - 0 and Var([W(t)] - 1 for all

t > 0. Also for r > 3 and all instants t1 ,...,tr > 0 (not necessarily distinct)

we have

Cumr{ W(tl),.. "'W(tr) } " - /2

n Var [mw(ti)]
i-I

18



and using Proposition 2 for the numerator and the lower bound in (30a)-(30b)

for the denominator we find

1)
Cumr{W(tl), ... W(tr) = o(N-( -Z )) 0 as W-

since r > 3. Finally, for tI $ t2 we have E[(w(tl)&W(t2 )1- 0 as W- since for

large enough W (say it - t 2 ), W(tl) and ew(t2 ) are independent as
W- < Il t~l' epedent s  Wtl

and m (t2) are expressed in terms of nonoverlapping blocks of N ZW i* It then

follows by Lenma P4.5 of [16] that the finite dimenslonal distributions of

(Ew(t), t > 01 converge as W- to the finite dimensional distributions of a Gaus-
sian process with mean zero and covariance R(tl,t 2) - 1 for tI - t2 and R(t1 ,t2)-O

for t1 # t2 ; which establishes the desired result for mW(t).

The bounds (29) for the normalization factor $w(t) follow from (28), (30) and

the observation that

III. TRANSMISSION OVER A NOISY CHANNEL - ERROR ANALYSIS

In this section we study the degredation in the performance of the receiver

of Section II when the binary data {ZWk} is transmitted over a noisy channel.

The modification in the transmitter/receiver structure of Figure I is shown

in Figure 2. The binary sequence {ZWk} is now pulse modulated

~ k
p(t) = 20 Z,k '~ t

where a(t) is the transmission filter, i.e., a(t) is a fixed function over (0,1/W],

vanishing outside of [O,I/W), with finite energy

I/W
•W - la(t) 2dt.
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The power of the transmitter is then

11W
* Wew "W f Ia(t)12 dt. (31)

0
A possible choice for a(t) is, for example, a(t) - C sinwWt l(oI/W](t) for which

p(t) resembles a PSK waveform and the transmitter power is then PW Z C2/2. The

channel noise n(t), --<t<m} is assumed to be a wide-sense stationary process,

independent of the sequence (Xk}, with mean zero and covariance function R(t).

The channel noise need not be Gaussian nor white. The received waveform is then

( r(t) - pWt + n(t), t >1O.

The modification in the receiver, as shown in Figure 2, is based on the simple idea

of first estimating ZWk from the received waveform r(t) over the kth interval

kand then the estimates {Zwk} as the input to our previous (noise-

less channel) receiver. This is accomplished by employing a standard matched filter

whose output

k+l)/W k
Tk - a(t- W) r(t) dt, k=0,1,.... (32)

k/W

is used to estimate ZW,k by

ZW,k - '(Tk) k - 0,1,... (33)

where the transformation T(x) is specified below. Hence the estimate Sw(t) of s(t)

is given by (9)

s W(t) - g[mw(t)j, t > 0 (9)

where, as before, g(x) is specified in Assumption B but with mW(t) is now determined

from

N-Iw(k) - 1 Zwk i  k- 0,1,... (7')

N ZWk+i

20



by (8a) or (8b). For convenience of notation we shall write mW(t) in the form

TW(t) = - hw(t,i) Zwi ' t > 0 (8')
1 0

where the kernel [hw(t,i)} can easily be identified for the sequential estimates

(8a)-(8b). In fact, the analysis in this section is valid for any {hw(t,i)}

corresponding to a positive linear operator with

i. hw(t,i) > 0 for all t > 0, i > 0,

ii. hw(t,i)= 1 for all t > 0,
i=O0(34)

2 hw(t,i)< - for all t>O,i=O wt~)

iv. h2 (t,i) < - for all t > 0.
i=0 W

Consider now the question of choosing the nonlinearity '(x) in (33). It is
A 2natural to base the choice on minimizing the mean-square error E[Zwk-Zwk ]

under the constraint that ZW,k takes on the values ±1. For example, when the
channel noise is white and Gaussian with R(t) = (vO/2)6(t), the analysis gives

W ()= sgn x (i.e., ZWk = sgn[Tk]) which corresponds to the classical optimal

detector (nonparametric in the signal s(t) )-see Part C of Appendix -. For this

case one finds E[ZWk - ZW,k]  = 4-(dw)] where dw = /2ew/vo0 is "the signal

to channel-noise ratio". However, as seen from the Appendix, this optimal de-

tector for the symbol ZW k is not necessarily optimal as far as the estimation

of s(t) is concerned. In fact, the linear choice (x) = x/ew, which gives the

worst possible error E[Z - = 1 under the condition dw=l, provides a

smaller degradation in the estimation of s(t) than the "optimal" '?(x) z sgn x.

Consequently, we shall assume in this section that

Tk
ZWk = eW  ' k 0,1,... (35)
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which is simply a scaling of the matched filter output.

We have,

Theorem 3.1. Let Assumptions (A) and (B) be satisfied and the estimate sw(t)

be given by (9) and (8') with ZW,i given by (35) and {hW(ti)} satisfying (34).

Then

a) When the channel noise is white, with R(t)- (v0/2)6(t), we have for each

fixed t > 0,I2
E[sw(t) - s(t)]2 <KI As;a (t)) + K2(I + 1 2

b) When the channel noise is colored, with arbitrary continuous correlation

RM, we have for each fixed t > 0,

E[Sw(t) - s(t] 2 < K1 ws;w(t)) + K2(v(t) + R()W

where in both parts (a) and (b)

i i 2
vw(t) = (t-q)

izO

W =0

dW  = v7 e 0

and the constants K1 and K2 are as in Theorem 2.1.

Corollary 3.1. Assume {hw(t,i)} corresponds to the sliding windows of

Section II (cf. (8a)-(8b)),then

a) When the channel noise is white, the sequential estimates sw(t) satisfy,

uniformly in t > 0,
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2 N K2  1
E~sw(t) - s(t) 2 < K1  s )+ - (1 + -1 )

V7 W dw

b) When the channel noise is colored, the sequential estimates sw(t) satisfy,

uniformly in t > 0,

E[sw(t) - s(t)2 < K, 2(s;-L -)+ K2(! + R(0).
- r N WeW

A comparison of Corollary 3.1 with Theorem 2.1 shows that the channel noise

simply increases the variance of the estimate sw(t) by a factor inversely propor-

tional to the "signal to channel-noise power ratio" (e.g. Wew/R(O) in the colored

noise case).

Proof. By (32) we have
I/W 2 IN/kTk = ZWk f 2a(t) dt + a(t) n(t- q) dt

0 0

so that by (35)

ZWk = ZW,k + k' k = 0,1,... (36)

where (CO is a wide-sense stationary sequence, independent of {ZW,k}, with mean

zero and covariance sequence Pn = E[n+kJ given by{ /WS ff a(t)a(T)R(t-T+ W)dt dT, noise is colored
W

= (37)

W n , noise is white

Since the ZW, 's are independent with mean m(k/W) and Var[ZW k] l, we have

by (36)

E[ZW,k]  m(k/W)
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and

6i' j + IPi-jI , noise is colored

ICOV{Zw,iZw,jI < (38)

Si , ,noise is white.

Hence for the estimate mW(t), given by (8'), we have

E[mw(t)] = 3 hw(ti) m(i/W) (39)
i=O

and

Var([(t)] = Cov{Z i,ZW,j } hw(t,i) hw(t,J(40)

i=b J=-O WiWj ti)htj)

Since m(t), t > 0, is a uniformly continuous function, we have by the result of

[li, on the interpolation of continuous functions by positive linear operators,

and (39) that for each fixed t > 0

IBias[mW(t)]l < 2 w(m;aW(t)) (41)

where a2(t) is given in the theorem. For the variance expression (40) we consider

the white noise case first. Then by (38)

<a(Wt) i(1 17 2.~t = (1 + 1 2 (42a)
dw i 0 dw

t When the channel noise is colored we have Pi_j l < and by (37)

RO / a 2 < R1/W
00 < ez fat I t WeW

20
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where we have used the Cauchy-Schwarz inequality in the last step. Hence

by (38) and (40)

Var[mw(t)] < 2 (ti) + We h

10 W j0 ti)

= 2 R(O) (42b)
vW(t) + e)+WW

where the last step follows by (34.ii). We thus have by C41) and (42),

4 2(m;a (t)) + (1+ -1)v2(t), noise is white7 d W

E[mW(t) - m)2 <d

4w 2(m; (  +V 2(t  + R(O) noise is colored
vw t) We'W

and the result for sw(t) follows from (13) and Proposition 1 in the Appendix. -O

The implications of Corollary 3.1 are now considered in more details. In

the case of colored noise, the contribution of the channel noise to the mean-

square error of Sw(t) is the additive term K2R(O)/WeW = K2R(O)/?w, where P is

the power of the transmitter. Thus to combat the channel noise, Pw must be pro-

portional to WX for some X > 0. In the case of white noise, the contribution is

the additive term K2/Nd = K2vo(W/N)/P. If the block size N is chosen to be

O(W for Lip y signals (cf. Nopt given in (20)), then P must be proportional

to W[2y / (I+ 2y )] + X for some X > 0 in order to combat the channel noise. It is

then clear that the transmission power PW must be appreciably higher in the white

noise case than in the colored noise case for the same channel noise contribution

to the mean-square error of w(t). It is also of practical interest to obtain the

values of the parameters (W,N, P) for the reconstruction of the signal s(t) to)2
be achieved with mean-square error not exceeding a given level 62. For simplicity

we carry out the analysis for signals s(t) having bounded derivatives Is'(t)l< D

(i.e., s(t) E Lip 1) and a sinusoidal pulse
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s inWt 0 < t <

a(t) = (43)

, elsewhere

is used as a transmission filter.

a) White Channel Noise. Choose Cd2 W. Then d= 1 and the channel noise

simply doubles the variance of the estimate sw(t). We have by Corollary 3.1

E[W(st) - s(t)]2 < K1 D2(_w) 2 +

Minimizing the right hand side with respect to N, we obtain the optimal block size

to be (the integer part of)

o Kt K
/

2 
W2/3

for which

ESw(t) _ s(t)] 2  1 K2 D2 1/3 2/3

Hence, for the mean-square error to be less than 62, we require the values of

(W,N,C2) to be

W >3Vrl K2 (D/6
3), N = 3K2(1/62) ,C2 = V 0 Al K2(D/6

3 ). (44)

Under (BI) - the simplest transmitter/receiver structure - these values are

W >6b 2(D/ 3) , N = 3b2(/ 2) , 2  6 v0 b
2 (D/63). (45)

b) Colored Channel Noise. By Corollary 3.1

E[ w(t) - s(t)] 2 < K, D 2 (_NN )2 + K (I + 2R.).
WV7 W 2N C2

Minimizing the right hand side relative to N, we find
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I

N0 ~ 3KS2.? 1/3 W2/3

and if we demand, as in case (a), that the noise contribution simply doubles the

variance we find

22

C2 = 2R(O)N opt

and for the mean-square error to be less than 6 we need the values of (W,N,C2) to be

w > /T2377 /F K2(D/6
3) N = 5 K2(162) , C2 =  5R(O) K2(1/62).

(46)

Comparing (44) with (46) we note that the transmitter power C2 in the white noise

case is proportional to the variation parameter D of the signal and to (1/63 )

whereas in the colored noise case the transmitter power is independent of D and

proportional to 1/6 2 only.

IV, COMMENTS

We point out some open problems connected with the reconstruction scheme

considered in this paper.

We first note that the results of this paper generalize and sharpen those

of [4]. In particular, the mean-square convergence rate obtained here is W
2/3

compared to W"I 2 for the nonsequential estimates of [4]. An open problem is

therefore to find the ultimate mean-square convergence rate of any recovery

scheme (sequential or not) based on the binary data {Zw,k}k. We believe this

rate to be W for nonconstant signals s(t) (when s(t) is constant for all t,

the problem is trivial). One reason for this belief is the nature of the trade-

off between bias and variance in Theorem 2.1 (as a function of the block size

N) which is reminiscent of a similar trade-off in spectral and probability den-

sity estimation (as a function of the window-bandwidth parameter). This problem is
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currently under investigation.

A second open problem is to extend the results of this paper to the case

where the signal s(t) is not necessarily uniformly bounded. It is clear that

in such a case the contaminating sequence {Xk} should have a strictly mono-

tonic distribution F(x) over (-,-) e.g., Gaussian). Then u(s) is strictly mono-

tonic on (-o,'), s(t) = m(t)], and we set s(t) = u-1 [;(t)]. Now it is

possible to show that A(t) converges to m(t) with probability one and thus,

also, i(t) to s(t) since uI(x) is a continuous function. The main problem

in this case is to obtain bounds on the mean-square error for i(t); the difficulty

being that such bounds cannot be obtained from those for m(t), as in the proof

of Theorem 2.1, since u- (x) is not Lip 1 on [-l,l].

The question of extending the results of this paper to stochastic signals

is currently under investigation.

APPENDIX

Collected here are two propositions needed in the proofs of the theorems in

Section II as well as a supplement to the white channel noise case of Section 11.

The first proposition provides the link between the properties of sw(t) and

Iw(t).

A. Proposition 1. Under Assumptions (A) and (B) we have: Under (Bi)

s w(t) - s(t) = b[m(t) - m(t)]

and under (82) or (B3) we have for each integer p > 1.

Elsw(t) - s(t)PO< Ap Elmw(t) -m(t)l p
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where

p/2 p2 2
for (B2): Ap = (w/2)p/2 aP epc /2a [1 + (b/E) p]

for (B3): Ap = a'P eP~c [1 + (b/E)P].

Proof. See Proposition 5.1 in [4].-

The second proposition provides upper bounds on the cumulants of the estimate

Amw(t).

B. Proposition 2. For every integer r > 2 and every choice of instants

tI, ....tr in the joint cumulant of order r of the estimates mw(t) (cf. (8a)-(8b))
satisfies

^c u ^ r
Iur mw(tl),.-. mw(tr)}I _Nr--FT

N

uniformly in {t} for some finite constant r
3k. k+

Proof. Assume without loss of generality that tj E [- , -i), j = 1,..., r,
3 w W

where the integers k,,...9kr are not necessarily distinct. Then we can write

k +N

mw(t hwk (t.,i) Z

where for the estimate (8a)

I I i = 0,1,...,N-1hwk (tj,i) = "(1
S0 , otherwise

and for the estimate (8b) they are given by (17). By Proposition 4.2 of [41 we

have
r

Crfmw(tl)""'. mw(tr)l <- r ri I Tr.l hw'kjt')()

iEl '1

where

II ~k {kj, + N}.

29



For the estimate (8a) we have by (Al)

r 1
r hwkj(tj,i) Nr

iEl jI i N
1l 1

N r N

where V' n l (kj,..,k + N-l and the inequality follows from the cardinality

of I' being at most N. for the estimate (8b) we have from (A2) and the rt- dimen-

sional version of Holders inequality

A r )r}1/r
-Cumr{mw(tl),...,mW(tr)}l rr 1 [hw,k.(tjsi)) (A3)

- j=l 'El

Now by (17)

Chw k(tj,i)]r < C hw~ j,i)] r

iEI - iEI (t

r l {[l-(Wt. - k.)]r + (N - 1) + (Wt. - k.)r}

Nr

N r (A4)

where the last step folows from (l-x)r + xr < 1 for 0 < x < 1. The result now

follows by substituting (A4) in (A3).-

-C. Supplement to Section III. Assume the channel noise {n(t),--<t<-} to be white

and Gaussian with R(t) = (vO/2) 6(t). Let

Z sgn (Tk e) , kO,l,...w,kk

]2

for some threshold 0 which minimizes ECZW k ZW,k . It is not difficult to see

that

k]2E[ZWk - ZW,k] e
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where Pe is the probability of error per symbol given by

Pe ~ eW (.+ e ~ k/W) 6L~ + p-( 2  ew)

the value of 8 which minimizes 
Pe is

1 I - m(k/W)e d I + mtk/W)

which is dependent on m(k/W) = u[s(k/W)]. Since s(t) is unknown, a nonparametric

choice of a is 0 = 0 for which

ZW,k = sgn[T k] (A5)

and

ECZW,k - ZW,k 2  = 4[l - P(dw)] (A6)

where

dW =o r (A7)

We then have

Proposition C. Under the assumptions of Theorem 3.1, but with ZWk given by (AS),

we have when the channel noise is white and Gaussian

E[Sw(t) - s(t) 2 < Kl{f(s;aw(t)) + -l-(dw)]1 2 + K2 vW(t)

where t(t), v (t), and the constants K1 and K2 are as in Theorem 3.1 and the constant

Q is given by (12).

Corollary C. Under the assumptions of Corollary 3.1, we have, uniformly in t > O,

E[sw(t) . s(t1 2 < Kl{=(s ; N ) + 1l.$(dw)],2 + K2
1 W N
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Proof. The derivations proceed in the manner of the proof of Theorem 3.1 noting

that for ZW,k' given by (A5), we now have

E[Zw,i] = [21(dW) - 1] m(i/W)

ICov{Zw,iZw,j}I . E(Zwi]' Sij = 6i,j

Then

IBias mw(t)) <2(2(dW) - 1] w(m;aw(t)) + 2(1- 4(dw)JIm(t)I

< 2[w(m;aw(t)) + [1 - @(dw)]}

and

Varmw(t)]< h (t,i) = vw(t)
0 =0

and the result follows.O]

Note that the channel noise here increases the bias of the estimate sw(t) in

contrast to Theorem 3.1 (a). Corollary C implies that the additional term, due to

the channel noise, becomes negligible only when the "signal to channel-noise ratio"

dW tends to infinity as W-. In sharp contrast, Corollary 3.1 (a) implies that the

additional term K2/d2 N, due to the channel noise, becomes negligible as W- (and thus

N-*a) even if dw 1 1, say. Thus, with dw=l, the noise contribution when ZW,k is^ iA

nonoptimal (35) will be smaller, for large W,than when ZW,k is optimal (A5). This

conclusion holds eventhough with dW 1 we find for the nonoptimal estimate (35)

that (cf. (36), (37))

3E[ Zw~]E[w, k - = I
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Fig. 1 The structure of the transmitter/receiver model -noiseless channel
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